e wan s

NOS SYMPL CODING STANDARD

1

06701783
TABLE OF CONTENTS
1.0 Introduction % 6 2 s 2 3 8 s s s 8 P % e 8 s 8 e » » 1-1
240 COd‘nQ Staﬂdafds ® 8 8 3 0 3 s P 2 A e P 2 8 8 8 8 e » 2-1
2s1 GERETQf S A I T T O R e . 2-1
2.2 Parameters , MR A R I T T R N P 2=2
293 XREF o o o o o o 2 % 2 % 8 8 &t 8 e s % 2 2 B2 B 8 e e » 2=2
2e4 DEF o o o o o o o ® 2 e 8 8 6 0 e 8 s s s e e e s o o 2=3
25 STATUS o« o & * e 8 3 s 8 s o * 8 8 2 2 % & 2 2 3 8 e » 2=-3
2.6 COMDECK * 2 2 s 8 2 s e 5 8 8 8 s 8 o 2 e s = * o o 2=-3
27 Non-array'ltems L A R R L L e T 2=4
248 Arrays 'y S & % 2 @ 2 2 S 2 s s S e 8 % 8 % s @ 2=4
249 FOR Loops: tFQSt or Slow) . s & 2 9 8 o & 8 8 2 8 8 8 @ 2=-5
2.10 GOTOs and SWITCHes {Case Statement) . * 2 e % e s 8 » 2-5
211 1IF 9 8 e 9t e e s 8 s e s 8 » 2 8 8 o s 8 s 8 8 o 2=5
2212 Bead s % 2 2 2 s s e s * 2 2 8 8 2 % B o % 8 2 = @ 2=5
2.13 PROCS)vFU‘CS)kaﬂd PRGMS & o o o o ® 9 9 s 8 & o 8 & o 2=5
«0 Naming Conventions ® 5 9 5 & 5 5 8 B o & 3 8 8 2 = » 3=1
«0 Code Readability « o . S 8 8 s % s & 8 s 2 6 9 e e s = 4-1
+»1 Format of Statements ® & 3 2 3 2 o 5 ¢ & ® B 6 & 8 ® » 4-1
«2 Column I L B I . T 4-2
»3 Blank L!nes 3 8 & 8 0 2 2 e 2 0 T 3 8 ® 5 8 & » e e @ f=2
4 Page EJECtS 2 s 8 s e o s 2 % 2 3 8 2 5 8 5 8 9 8 8 » 4-2
50 Documentation’Standards .8 2 e s 8 e 9 % B 2 8 e s s 5-1
51 Comment Formats and Types 2 % o 5 s 2 8 s * 5 o 9 o 5-1
5141 Embedded Comments 2 4 e s 8 s e o e s 2 * 8 o o 5=1"
50102 S‘ﬂg!e Line Comments . . ® 8 8 3 3 8 8 ® s e 3 ® » 5-1
5e¢l.3 Stani Alone Comments * 2 0 B e 2 B+ P e 9 B B 8 8 @ 5=2
5¢143.1 Brackets {(*%%%) o o s ® 8 & 2 & s e 2 8 8 » 5«2
51432 External Comments {*%%x) * % 2 2 s s 0 s s » e 5=2
5e1e3+3 Internatl Comments {(*x%x) , S 2 ¢ 2 3 o 8 3 8 s » 5=2
5:¢1e3.% Module Comments (%) 2 5 5 2 ® 8 o & 2 8 8 e 5«3
52 Program Level DOCUNEﬂtat’OH * 2 5 e 8 e e 2 3 e » @ 5-3
53 Documentation of PROCs and FUNCS o ¢ o o & * » 9 8 & o 5=4 .
54 Documentation with Embedded Comments o o . . e o o o 5=4
54441 Data Dec!aqatlon Embedded Comments o o o« o o o o o 5-4
J¢442 Action Code Embedded Comments o o o o ¢ o s s 5-5
5¢5 General Documentation for PROCss PRGMs or FUNCs .+ & & 5=5
6.0 Examples , 8 2.8 8 8 s 2 8 8 s ® 6 5 & 3 5 s » & » H=1
6.1 COMDECK Examples ® 0 % 3 s 2 s s s 2 s B s e 9 9 8 8 » -1
6.2 PROC Exaapie s o @ * 2 . @ 8 5 o » a‘o_c * o * & 8 a 9 -2
6.3 ite ® % & & o 8 5 8 o o b=4%

Status Listlstatus Su tch Example

Al.0 Addendun for SMF PfOJeét 2 s o 8. 2 » * s s o B 8 o @ Al-1

1-1
NOS SYMPL CODING STANDARD :
06701783

1.0 Introduction

1.0 Introduction

The purpose of this standard is to provide a meaningful set of
practices which witl lead to ™good®, consistent, maintainable,
organized and optimized SYMPL code. This document used the SYMPL
Coding Standards DAP (DCS S1831)» the NOS COMPASS Programming
Standards and the SYMPL Coding Standards for the SYMPL project in
SVL as guidelines, '

This standard Is in addition to the NOS COMPASS Programming
Standards.: The procedures established 1In the COMPASS standard
which are not-unique to the COMPASS language (i.ee. General
Requirementss Code Transmittal Ruless and Dayfile Messages) are
to be adhered to for SYMPL programming also.

yhere the word ™must” appears in this standards deviations
will not be approved, Where the word "shouild"™ appears, reviewers
may allow a deviation if the analyst can present convincing
reasons for the deviation. :

: 2=-1
NOS SYMPL CODING STANDARD :
06/01783

2.0 Coding Standards

2+0 Coding Standards

- 2+1 General

All declarations pertaining to a PROC or FUNC should use the
foliowing grouning :

" Formal Parameters
XREFs

DEFs

STATUS names
COMDECKSs

ITENs

BASED ARRAYs |
ARRAYs

SWITCHes

Other

Al dec!arafions or calls to COMDECKs should be in alphabetic
order., . < .

Each declaration must start on a separate line and must be
accompanied by a comment describing Its function,

"Each executable statement must start on a sebarate line,

Each BEGIN and END must be on a separate line,

A declhration which is a one-~bit field should be Boolean,

Self modifyfng cod§ must not be used.

All !abé!t begin in column ones Labels must appear on lines
by themselves except for embedded comments., All label names must

be unique within a PROC/FUNC.

TEST must never be used without explicitly stating the
induction variabte It Is testinge. '

- . Define CG%TRBLFDISJDINT and CONTROL INERT in a COMDECK. Use
CONTROL OVERLAP and CONTROL REACTIVE to define the exceptions,

Where numeric constants are established via DEFs or STATUS
listsy the assumed numeric values should not appear 1in the
coding documentation, PR . : '

Items I, J and K should be reseried as simple loop or control
variables.: i R el

| 2-2
NOS SYMPL CODTING STANDARD
06/01/783

2+0 Coding Standards
2s1 General :

~The code nust not make assumptions about the octal representa-
tion of characters, This representation varies between the
various NOS character sets, ‘ '

.Machine independent instructions when available should be used
in preference to dependent structures.

2+2 Parameters

Use cali=by=-value parameters . whenever possible, Only use
call=-by=-addrass when the parameter s modified within the
procedure 2and the new value of the parameters is returned to the
calling program,:

Reuse actual oparameter 1lists whenever possible, If the
parameters are used for a number of calls, use the same order of
parameters for more efficient coding.:

Formal‘p;}éaeters'must be declared within the PROC/FUNC rather
than in a2 common decke They can be ordered alphabetically or
according to the calling sequence, ‘

An array‘item_ nust not be used as a parameter wher2 2 new
vajue of tha parameter is returnedy, since this feature is not
supported in SYMPL,: :

2+3 XREF

Declaration of external procedure names are to be done in the
following format, The referenced PROC/FUNC names are to be in
alphabetic sequence,

Examplet
#
*k¥%x PROC Y - XREF LIST BEGIN.
.
XREF
BEGIV ‘ : ,
PROC APPLE; : : # PARES APPLE #
. PROC BANANA; . # PEELS BANANA #
PROC DRANGE; _ # SQUEEZES ORANGE #
END '

.# | | ‘
*¥k%%x PROC Y - XREF LIST END.
* ;

: 2=3
NOS SYMPL CODING STANDARD
06701783

240 Coding Standards
~2+% DEF

2.4 DEF

Use DEF to provide symbolic constanté for numeric constants
for ease in findings identifying and modifying parameters.,

A DEF must not be used to rename a variable.

A DEF must not be used to redefine a Tunction calls, a reserved
words or an operation unless it is used consistently throughout
the system to improve clarity. Otherwises this may tend to
obscure the actual code. All DEFs which redefine the code or
make it a conditional compilation will be placed in 2 COMDECK.,

The DEF forwat for a full word octal constant is in 4-digit
parcelss For example: : : .

DEF ERRMASK ¥0"0037 7740 0505 0000 7777"#; # ERROR BIT MASK #
2.5 STATUS

Status lists should contain no unused positions, Any unused
‘positions must ba filled with a dummy argument and have ‘a3
RESERVED # or # NOT USED # comment., It may be better to use
DEFs if there are many unused positions or .any of the elements
are expected *o change. :

2.6 COMDECK

Executable code shculd not be placed Iin a COMDECK.

The declarations for a data structure must be wholly contained
within a single common deck. Where two or more data structures
are interdependenty the declarations for the interdependent
structures must be in the same common deck.

Logically associated dsta 1items and structures should be
declared in one COMDECK unless they are only to be used by one
module where they may be declared locally. :

One or nmore COMDECKs must contain aill deciarations affecting
table size which could be changed with the system. This is ¢to
facilitate maintenance. » :)

Common decks must not be !!sted.

A PRGMy PROC: or FUNC should only call the common decks that it
references.

2-4
NOS SYMPL CODING STANDARD
06701783

2.0 Coding Standards
2.6 COMDECK

Every comwon deck must have an overview description of what it
does. The following format is to be wused, The 1list control
statements begin in: column 48, ' :

- # ‘deck name — description, - , v v
: ' CONTROL NOLIST:

CONTROL IFEQ LISTCON»1:
CONTROL LIST;
CONTROL FI; -

#

k% deck name = description.

* : .

* {purpose) {(saveral lines can be used)

#

CONTROL LIST;
27 Non-array‘!tems

The itemsy: the vyariable names» the types, the presets and the
embedded conments should each be vertically aligned. Leave room
for ten character variable names and leave room for character
counts on character type items for ease of future maintenance,

Variables should hé declared alphabetical!y.
2+8 Arrays
Arrays used by more than one PROC must be defined 1in

COMDECKSs.:

Usage of items from an array must élnays be subscripted. It
is confusing to default subscripts.

Item dec{arations must be in ascending order (i.e. word O blt
0 to word n bit nYs If overlapping declarations are wused, then
thg item whi:h spans other items must be first,

Array indlices should start with zero.

The array namep bounds and the allocation/size must be
separated by blanks {e.g. ARRAY EXEAPLE [0:101 P(2)3).

Items within an array are ailgned With the begin for ease of
readinge Each Item must be documented. : -~

: 2=5
NOS SYMPL CODING STANDARD
06/01/83

240 Coding Standards
28 Arrays

The item namness type/positionss preset valuess and embedded
comments should each be vertically aligneds Leave room for ten
character item names and for two digit "ep™, "fbit", and "™size™
fields and use at !east two spaces after the semicolon to ease
future maintanance,! . :

2.9 FOR Loops (Fast or Stow)

FOR loops are of two types., In the siow FOR loops» the object
code has a direct correspondence with the SYMPL statements, This
is not the case with fast loops. A fast-for-1loop is optimized by
pre—-evaluating the STEP and UNTIL/WHILE elements. At teast one
cycle of the tnoop Is executed.

Fast FOR loops and slow FOR loops must be used. A simpte
FOR statement must not be wused. For easier readability and
. programmings use DEF statements to set wup FASTFOR or SLOWFOR
instead of the CONTROL FASTLOOP or CONTROL SLOWLOOP. These DEF
statements should be placed in a CCOMDECK,

DEF FASTFOR #CONTROL FASTLOOP; FOR#
DEF SLOWFOR #CONTROL SLOWLOOP; FOR#

For better optimization consider wusing STEP/WHILE as an
alternative to STEP/UNTIL. : o

The 1Induction variable must not be changed during the loop or
by 8 FUNC catled while evaluating the STEP/UNTIL/WHILE part.

~ The exit from a loop should be through an UNTIL/WHILE or a
return statemesnt., The wentry into a loop must not be in the
middle of the lpop,.:

The executable statement(s) after the OO part of a FOR !oop
must be enclased in a BEGIN/END pair.

2410 60T2s and SWITCHes {Case Statement)

GOTO should be employed only if the resulting source code 1Is
demonstrably superior in performance, claritys, maintainabilitys
or extendibility, 1In spite of structured programmings GOTDs may
make the code: more efficient if employed properly. GOTOs may
make it difficult to follow logice Jumps into FOR loops must not
be wused.: Jumps into code within a THEN or ELSE should not be
usede. Jumps backwards in the code shou!d not be used.

2=-6
NOS SYMPL CODING STANDARD ~
06/01723

2.0 Coding Standards
2.10 60TNs and SWITCHes (Case Statement)

" A GOTD statement specifying a subscriptedksuitch list may be
used to simulate a case statement., Each case should end with a
6070 branching to a commo exitsy a RETURN statementy or an ABORT
calle, .) L - ’ .

Simulated case statements may use a multiplicity of labels
for exitss provided that .the selection of exit points is done
to achieve consolidation of similar sequences of codes and that
all such labats are grouped together. See the Examples section
for an examole of a simuiated case statement. :

2411 IF

The THEN and FLSE part of an IF statement must always use a
BEGIN/END pair.’ If embedded comments are needed to describe the
conditions they should be placed with either the THEN/ELSE or the
associated BEGIN/END pair rather than on the IFs A stand alone
comment following the THEN or ELSE may be wused instead if
embedded coaments would be too 1long or would restrict the
readability of the code.

Related IF statements should nof be nested more than 3 deep,
A simulated case statement may be used.

Compound conditionals on an IF statement should be ordered
such that the first condition Is the one which will most likely
terminate the condition evaluation.

2.12 Besad

Avoid using bead functions unless necessarys Insteads the use
of an array with partial-word items is preferreds Bead functions
are difficult to undate in a program if the data item that |Is
beaded is ever changed. If wuseds do not cross—-type (bit
functions shoul!d be used only on numeric data, byte functions
only on characters). :

Bead funstions may be wused to simulate data definition
features not currently implemented with SYMPL such as repeating
groups within a word,. :

‘ 2-7
NOS SYMPL CODING STANDARD
06701783

2.0 Coding Standards
2413 PROCs» FUNCss and PRGMs

2+13 PROCss FUNCs» and PRGMs

XDEFsy alternate eﬁtry'points, énd internal PROCs should not
be used. they are hard to locate in the program and wifl make
- debugging and nodification more difficult,

PROCs and FUNCs must have‘a fixed {not variabie) number of
parameters, : ‘

The F option:on the SYMPL command must not be used. Instead,
use CONTROL FTN" in the source when needed. :

3-1
NOS SYMPL CODING STANDARD
: 06/01783

3.0 Naming Coanventions

3.0 Naming Conventions

A1l declarations and PROC/FUNC names should be descriptive.

Routines may use simple 1local variables named TMP1, TMP 2y
etc, However, such names can be used only for wmulti-purpose
jtems. Items aith a specific computational purpose should have
a meanianu! names ’ :

Al external identifiers {PRGMs PROC, FUNC names) must be 7 or
less characters. The loader truncates a name to 7 characters,

- A1l internal Identifiers {declarations, arrays, status tist
names) must be 10 or less characterss A 3 may be used as another
tetter in the alphabet, Howevers $ is invalid in the deck nanme

because of MODIFY, ‘ : '

All arri&” !tems” shﬁuid be prefixed by the first 3 or 4
characters of the array name. The last & or 7 characters of the
array item ar’e the descriptive name.

All retated DEFs should use the same prefix.

All COMDELX names should be 7 characters ln'length and should
be in the following form

COMxaaa

where :
aaa = Symbolic name of COMDECK
x = One of the COMDECK indicators:
A = COMDECKs used by more than one of the
"E» U or Z SYMPL groups
Data manager '
CPU code
Display driver code :
EXEC portion of MSS (SYMPL)
Full screen editor (FSE)
Initialization
Transaction subsystenm
Mass storage error equlva!ents
PP code
Subsystem text symbolsy constants
Tables
Utitities (SYMPL)
Driver portion of M35 {(SYMPL)

NC-HNDERRHTIMOO®
H O#ONRH W KK NN N

| 4=1
NOS SYMPL CODING STANDARD
06701783

4+0 Code Readabitity

4.0 Code Readabitity

4.1 Format of Statements ' : -

All declarations must begin in column 7 and be finished before
column 72, Column 72 must be blank to separate SYMPL code and
comments from MODIFY sequence numbers. Each line of indentatton
is two spaces,’ R

Each BEGIN/END is on a separate line. The first BEGIN 1is 1in
column 7. Subsequent BEGINs are each indented two spaces., Code
following: the BEGINs up to and including the next END, has the
same indentation as the BEGIN uniess exempted by some other ruile
(i.es labels are in column 1). The END statement reduces the
following indentation by two spaces. Any BEGIN/END opair that
brackets more than ten statements should have matching embedded
comments on the BEGIN and END. Redundant BEGIN/END pairs should
not be wused to highlight wmodule structure, This function Is
better accomolished with stand alone comments.

Each THEN/ELSE/DO is on a separate line and'is placed directly
beneath the IF or FOR portion of the statement, ’

A statement which overffous the Ifne must indent 2 spaces from
the original statement,

Compound conditionals in an IF statement must be separated at
the OR/AND 1if the entire statement does not fit on 3 single
lines If the statement needs to be separated because of Its
fength or at the programmer-s option, then the AND/OR plus its
condition needs: a separate line and Is indented two spaces.

Examples v
IF ¢ | IFB IF 8 OR C OR D
"OR (A AND B8) OR € THEN
THEN OR D BEGIN
BEGIN THEN | .
. N BEGIN .
END BN END

'The format pf the FOR statément follows the IF. If the entire
statement: will not - fit on a single tines then the statement must
be separated into two lines and indented two spacese

7

NOS SYMPL CODING STANDARD

4=2

06701783

4,0 Code Readabitity
4.1 Format of Statements

FASTFOR I=1 STEP 1

UNTIL 7

DO ‘
BEGIN:

. - - -

END
442 Column 1

The following items must begin in column 13
Labels ' :
PRGM/PRIACIFUNL statements
Single tine comments
Stand atone comments

4,3 Blank Linas:

A blank !iné must be used in the following cases?

As the first line in each common deck .

Between al’l daclaration groupings

Before and after every stand-alone comment

Before and after all groups of conditional code
{exceot COMDECK list control)

After every END statement ;

Before every label {(cr sequence of labels)

Bltank tines (In addition to those required) may be
used to imprave: the readability of the code,

4.4 Page Fjects

A page eject mus{ be used as a separator between the
deciaration 3roups and the body of code.

If the: declaration groups and'the body of code will flt
on a single page, five bitank lines may be used rather than
'a page eject,! , '

: : , 5-1
NOS SYMPL CDODING STANDARD
’ 06701783

50 Documentation Standards

50 Documentation Standards

All documentation must <conform to the NOS operating system
requirementss’ This includes rules coencerning complete sentences,
capitalizatiaons punctuation, abraeviationsy, etce All stand-alane
comments are complete English sentences with correct punctuation,
ending with a period. ‘ s

5.1 Comment Formats and Types

Comments can appear in three different formats: stand atone,
single line and embedded, Stand alone comments have four types
determined by the number of asterisks on the initial 1ine of a
sequence of lines with asterisks in column 1. These four tyoes
are recognized by the DOCMENT utility and cause some comments (or
code) to be.included in DOCMENT output depending on DOCMENT run
time parameters,

51«1 Embedded Cbmménts

Embedded ~ comments appear on the sanme line following a
decliaration or executable statement, The (eft delimiter must be
preceded by at least two spaces and followed by only one space,
At jeast one soace follows the corment text before the right
delimiter, At- 1east one space must follow the right detimitar,
Column positioning rules for the left delimiter are given in the
section "Documentation with Embedded Comments", -

1

5¢142 Single Llne Commehts

These comments have a left comment delimiter in column 1y the
- text starting in column 3 for title lines or in column 7 for
common deck headerss and a right comment delimiter proceeded by
-at least one space all on a single lines This comment form Is
used in the following cases? :
-= Title tines _
-~ Common deck headers

| | 5-2
NOS SYMPL CODING STANDARD
» 06/01/83

50 Documentation Standards
51,3 Stand Al>ne Comments

5143 Stand Atone Comments

These comnments consist of at least 5 lines with the first and
. tast being blank linesy the second_and next to last having {only)
a comment delimiter in column 1 with the comment body starting
with 1ine 3, Each 1ine of the comment body has an asterisk in
cofumn 1 with dYanks normally found in columns 2-6.

The initial line of the comment body (line 3) may have 1ls 2, 3
or 4 asterisks starting in column 1 depending on the type of
output desired from the DOCMENT utility, :

5¢1+3.1 Brackets (®%&¥)

A opalr of stand alone comments of this form causes DOCMENT to
copy the comnent body starting with the opening bracket, and atl
subsequent code until the closing bracket. This is required for
XREF declarations.. = An- example 1Is iIndicated with the XREF
descriptions It- may aiso be employed for other declarations or
code which should be included on a DOCMENT run. :

The commant body consists of asterisks in columns 1-4 with
text on the rest: of the first lines The comment text should
clearly indicate which is the opening bracket and which {is the
closing bracket. : :

5+1¢3+2 External Conments (k¥%)

A comment body which is to be included in any DOCMENT run
{external or Internal) has 3 asterisks in columns 1-3 of the
first tine of the comment bodye The 3 asterisk form is generally
used to explala the interface to a SYMPL PRGM. It is also wused
in the header documentation for common decks. :

5¢1+3.3 Internal Comments (f*)

A comment body which is to be . included in a DOCMENT run

- selecting Internal documentation in addi tion to external

documentation has asterisks in columns 1 and 2 of the first line

of the comment body. This is generatly used to describe the

interface for each PROC/FUNCs It may also be used to describe
~other important Information about a PROC/FUNC/PRGM.

: 5-3
NOS SYMPL CODING STANDARD
: ‘ 06701783

5.0 Documentation Standards
5e¢le3e4 Module Comments (*)

5¢1¢3¢4 Module Comments (%)

A comment body which is not to be included in a DACMENT run
simply has 1 asterisk on the first line of the comment body.
"This type of stand alone comment is generally used tc¢ document
design information which helps one maintain or code review a
moduje.

" This type of comment can present design information for the
entire PROC/FUNC» or for a sequence of codes It should answer
the question: "how does this PROC/FUNC code segment work?"™

52 Progran Lkve!‘ﬁocumentatian

Every PRGY mnust have an overview describing what it does and
external documentation describing how it is usede The overview
documentation is very general. A description of the fields is in
. the NOS coding standards.

#

*kk {heading):

*

* {purpose)’

* .

* {command Fformat)

*

* PRGM program name,
* s

* ENTRY,: sesss

*

%* EXIT.: s e 908
* , k
* MESSAGES.! esses
x .
* NGTESO 2 9 800
* : o

* COPYRISHT CONTROL DATA CORPORATION, 1983,
M

In additions a PRGM may have interna! and module comments as
- appropriate,:

54
NOS SYMPL CODING STANDARD
S 06701/83

5.0 Documentation Standards ‘
5.3 Documentation of PROCs and FUNCs

53 Documentation of PROCs and FUNCs

Every PROCY/FUNC needs an internal documentation section. It
_should answer the question: ™how is this PROC/FUNC wused?". The
-description of the different fields is in the NOS Coding
- Standardse. o :

#

*¥ {heading)

*

* (purpose)

* _ :
* {PROC or FUNC statement with semicolon omitted)
*

* ENTRY" PRPYS AN

*

* EXIT . es‘nee

* ‘ '

* HESSAGES »oofooo

* ‘ :

* " NOTES esis e

x

#

If a PROC or FUNC references a based array whose pointer is in
a common biocks and the PROC or FUNC assumes that the pointer for
that array is set before the PROC or FUNC is calleds the entry
condition commants should state that assumption.

In addition, a PROC/FUNC may have additional internal comments
and module comments as appropriate.

Where a higher leve! of documentation is needed for a related
group of PROCs an extra PROC should be added to contain the
unifying docunentatione. . .

S5e¢tt Documentétlon with Embedded Comments

Embedded comments are of two documentation forms (i.e. data
declaraction or action code), This is the only type of a comment
that need not be a complete sentence., This type of comment
should not be continued onto another line. If absolutely
necessarys the comment may be continued on the following line.
In this case the second iine must not contain code.

THEN B V.'v[, # comment which is too long
o : continuation of commment #

5-5
NOS SYMPL CODING STANDARD
_ 06701783
5.0 Documentation Standards
Je+4e1 Data Declaration Embedded Comments

5¢4+1 Data Declaration Embedded Comments

Every arrays itemy, status itemy DEF and XREF item must be
documented with appropriate information, Each declaration should
appear on a separate iine accompanied by embedded comments
describing Its function (optionailys, if this is an ‘important
arrays It may be bracketed by comment lines with asterisks in
columns 1 through 4 so that DOCMENT will process ite.

Presets should be commented individualiy to reflect the
- function of the preset. - ,

The left delimiter of the embedded comment should be in column
38 unless the statement extends beyond column 35» in which case
the delimiter is placed at least two 3spaces to the right of the
statement, - : e , »

5¢4+42 Action Code Emﬁeddgd COmments

For BEGIN and END statements, the embedded comments are placed
two spaces to the right of the statement. For other statements
the embedded comments begin in column 38 unless the statement
extends beyond column 35 In which case the delimiter is placed at
least two spaces to the right of the statement,

55 General Documentation for PRCOCs» PRGMs or FUNCs

Each PRGM, PROCy FUNC statement must have a corresponding END
statement followed by the PRGMs PRCCs» FUNC name as a comment on
that same line. SYMPL comments containing COMPASS—-ilke tittle
pseudo=ops must apoear as the second line in a SYMPL PRGM, PROC
or FUNC. . :

PRGM OK3;
TITLE 30K - description of PRGM OK.

BEGIN # 0K #

END # 0K #

NOS SYMPL CDDTING STANDARD

6-1

DEF STEPCNT
DEF STEPPNT

$ak;

STATUS STEPVAL

¥

¢

Sl #

S2» #

$3, #

D1ls #

025 #

COMMOM ASPCCOM;

BEGIN # ASPCCOM #

ITEM HPMASK us ¥
ITEM STEPMASK U5 . M
ARRAY 4PT CO:STEPCNTI P(1); #

BEGIN \
ITEM HPTSLINK U(00,42518);
END

END # ASPCCOM #
END # CIMASPC ¥

06701783

6.0 Examples
60 Examples
6.1 COMDECK Examples N
1 7 | 38 48 71
+ + + + ==+
COMASPC
COMMON
Y COMASPS = STEP POINT CONTRCL. #

: CONTROL NOLIST; ,

CONTROL IFEQ LISTCON»1;
| CONTROL LIST;
o S CONTROL FI3
BEGIN # COMASPC #

‘ . R
xk% COMASPC - STEP POINT CONTROL.
* ' : A -
* *COMASPC® CONTAINS DECLARATIONS USED FOR CONTROL OF STEP MODE,

NUMBER OF STEP PDINTS - 1 #

(I) #B<{I)s1>STEPMASK#; # STEP POINT #

STEP POINT VALUES #

STAGING STEP POINT 1
STAGING STEP POINT 2
STAGING STEP POINT 3
DESTAGING STEP POINT
DESTAGING STEP POINT

N b g 3

EIE

HALTED PROCESS MASK #

STEP POINT MASK #
HALTED PROCESS TABLE #
HALTED PROCESS CHAIN LINK

CONTROL LIST;

6-2
NOS SYMPL CODING STANDARD
06701783

6.0 Examples
6.2 PROC Exanple:

N-YYA ﬁkGC Exannle

17 . | 38 48

PROC PSFIN{{NDVALUE)»{(SPVALUE));
TITLE PSFIN —*INITIALIZES THE CONFIGURARTION.

BEGIN # PSFIN #

: ~ ’
* PSFIN - INITIALIZES THE CONF IGURATION,.
* _ :
* #PSFIN® INITIALIZES THE CONFIGURATION OF A FAMILY OF
* DEVICES . '
3 : L.
* PROC PSFIN{INDVALUE)» (SPVALUE))
* ' . v
* ENTRY (NDVALUE) = NUMBER OF DEVICES IN A FAMILY.
* ~ {SPVALUE) = SPACE ASSIGNED TO EACH DEVICE.
* ARRAY HEADER = PSEUDD PFC.
*
* EXIT “ONFIGURATION IS INITIALIZED.
* : : :
* NOTES THE SPECIFIED VALUES ARE PLACED IN THE HEADER.
4 | : .
ITEM NOVALUE TH # NUMBER OF DEVICES #
ITEM SPVALUE us; # SPACE AVAILABLE PER DEVICE #
v
#%%% PRIC PSFIN - XREF LIST BEGIN.
#
XREF
BEGIN ,
PROC PSLOCKS ¥ INTERLOCKS THE PSEUDO PFC #
PROC PSUNLCK; # RETURNS THE PSEUDD PFC #
END
#

*+%% PROC PSFIN - XREF LIST END.

. , 6=3
NOS SYMPL CODING STANDARD L
06701/83 -

6.0 Examples

6.2 PROC Examole
DEF OFFSET #4#; | # DEVICE ENTRY OFFSET IN PFC #
DEF LISTCON 2043 # DO NOT LIST COMDECKS #

*CALL COMAMSS |

*CALL COMZHED _ 7_ o B
ITEM T I; | # LOOP VARIABLE #

ITEM NUM - Us L # CALCULATED NUMBER #
: CONTROL EJECT;

PSLOCK{HEADER);
* SET VALUES IN THE HEADER,

HEADSNIT)O1 = NDVALUE; '
HEADSSPDEVIO)Y = SPVALUE;

NUM = NOVALUE * SPVALUE;
HEADSSPFAMIO) = NUM;
HEADSSPAVFILO] = NUM;

SLOWFOR I = 1" STEP 1 UNTIL NDVALUE

Do _ - # SET SPACE AVAILALBE #
REGTV '
HEADSXXTII + OFFSET] = SPVALUE,
END

PSUNLCK(HEADER);
RETURN;
END # PSFIN #

TERM

b=t
NOS SYMPL: CODTNG STANDARD |
) 06701783

640 Examples ,
6.3 Status List/7/Statuys Switch Example

643 ‘Status List/Status Switch Example

'STATUS ERSTAT ~# ERROR STATUS #
ERRORND» : . # NO ERROR #
ERRORAFE, # FILE ALREADY EXISTS #
ERRORFNY - # FILE NOT FOUND #
ERROAINW> # UNABLE TO WRITE PFC #
4 ' # END OF *ERSTAT* # '

L]

ITEM FLAG SERSTAT; ERROR CONDITION #

SWITCH ERRCASESERSTAT # ERROR LIST #
: DK sERRORND» # NO ERROR #
PFEXISTSIERRORFES # FILE ALREADY EXISTS #
NOENTRYIERRORFN» # FILE ONT FOUND #
WRAITERR:ERRORNW;S # UNABLE TO WRITE PFC #

A status list may also be defined with an upper limit entry
put at the end of the list. This upper limit can be used Iin
the code to test that a varifable is within its defined range.
In this style the upper limit entry Is terminated with a
a semi=colon on the same line. ;

Example:
STATUS ERSTAT # ERROR STATUS #
ERRDRAND, # NOUO ERROR #
ERRDRFEY # FILE ALREADY EXISTS #
ERRNAFN # FILE NOT FOUND #
ERRORINW » # UNABLE TO WRITE PFC #
" ERRORENDS; # END OF *ERSTAT#* #

: 6=5
NOS SYMPL CODING STANDARD ‘

06701783
6.0 Examples ’
643 Status LlstlStatus Switch Example
‘ ' '
* PROCESS THE ERROR RESPONSE.
: o
GOTO ERRCASELFLAGI;
* N
* stand atone comment here or an embedded comment on the labetl.
" :
- PFEXISTS: - : ' ‘ # embedded comment %
GOTD EYD”ASE‘
NOENTRY - | . ~ # embedded comment #
GOTD ENDZASE;
'WRITERR: T T # embedded comment #
GO0TD EﬂD”ASE:
OKs o : o # embedded commeht #
GoTn EWO”ASE,
ENDCASE?: ’
’ ,
* PROCESS THE ERROR RESPONSE.

pos Al-1
NOS SYMPL CODING STANDARD ,
o o 06701783

Al.0 Addendum for SMF Project

This addendum describes changes to the NOS. SYMPL coding
standard: for’ the Screen Management Facility (SMF) oproject.
Certain-parts: of this change in the standard shall be ‘retevent
only to the Full Screen Editor and not to the screen formatter,

1 Structura! changes -
ae Mested procedureslfunctions are allowable under the
following conditions. The terminology used here shall be
weompilation unit™ for an outermost PRGM/PROC/FUNCs since
that is the scope of the map and cross-reference in the
tisting. =~ ‘ ' : '

Procedures and functions may be nesteds A compilation unit
may contain XDEF-ed 1iInternal routines provided that a
PROC/FUNS compiltation unit is never called via the main entry
point. Any routine may.contain internal routines which are
not XDEF-ed, That 1is, nesting of XDEF-ed PROCs 1Is only
allowed an2 level deap. s

The second tevel of nesting is used only for routines which
perform an algorithm not expected to be of value outside of
the :parent routine.' Second: level nested routines should be
very simple in their logical structure, The saame principles
wilkli apply for deeper level routines. ’

Non=XDEF internel procedures must have the same header
documentattan as any external procedure. ‘

External symbols may be more than 7 characters longe The
programmnr is responsible to assure uniqueness within the
first 7 characterse These oversize external names, while
permissiblie, are discouraged and sbould be used only when the
programmer cannot reduce the routine name to a 7 <character
name with sufficient clarity. '

Cce [OMPASS subroutines are alioned for optlmlzation of tight
leopss Such routines should be designed to contain a minimum
of declision=-making logic.

NOS SYMPL CODING STANDARD

067

Al-2

A

01/83

Al.0 Addendum for SMF Project | o

Wty e Ve s

- .
b Sl Ve ol

2

. described by using several common decks

~when the programmer can defend this

de Each compilation unit in the editor shall call COMAF
its first common deck. This deck contains symbol and

definitions which must appear early in the source code.

common decks may be. called either in alphabetic order o
functional! order, One example of functional order woul
the storage mapping of 8 common block which <can onl
{this can arise
situation where nested common decks Wwould be desired but
product Is is built via MODIFY) correct storage mapping

thus require that the common decks be called in a vparti
order for which alphabetic naming may not be reasonable,

Statement formats

2. The FOR keyword may be used. CONTROL FASTLOOP (FaAS
is not parnitted, S :

be FOR 1loops and simulated case statements are allow
terminate with a RETURN statement or the IORET macro. I
editory the ERRJUMP call may be used . to terminate any
of code.” ERRJUMP will be a procedure which s Itself al
to execute,axjump_lnto 8 procedures. ERRJUMP is used to
the editor . into a nominal «condition after encounter
syntax errar. 1In the editors code.may also be terminat

a call to a fatal-error routine,

Loops may be based on labels and 60TO-s in place of FOR
Usage as substant
more efficient or as being simpler to maintain

functionaltly equivalent structured code. :

L e r

SE as. 1
macros g
Other:istys
rint yvire
d be

in a

the s,
would
cular ¢

TEQR).

ed to
n the
block ¢~
lowed o
clear -1
ing Ex- S
ed by

S

e

,onlr:;
fally
than

s

Simulated case statements may .use a backward Jjump to

achieve. .

the common exit when the case is embedded

in

an

structure for which labels and 60TD-s are allioved,

iterative. .-

S

NDOS SYMPL CODING STANDARD

A1-3
06/01/83

Al.0 Addendum for SMF Project o T

3.

4.

Cse A PRBCIFUNCIPRGH statement shall begin in cotumn 1 for a
comp!latiom unit and for a first-ievel nested PROC/FUNC.
PROC/FUNS' statements nested . to deeper levels shall be
indented 2 columns per level, The body of code in a routine
shall bhe indented 2 columns from the PROC/FUNC statement,
Code contained In a CONTROL IF bracket shall be indented 2
columns from the CONTROL statement. BEGINs and ENDs shall be
indented 2 columnss and the code within the BEGIN/END shall
be alligned with the BEGIN/END. In the editory IOBEGIN and
I0END macros shall be indented as though they are BEGIN/END,

Documentation

B bncunentaton of ENTRY/EXIT conditions and of storage
usage must include assumptions regarding manipulations of
pointer words for based arrayss :

be For compilation units whose main entry point is unca!'ed,
the main entry may carry documentation considered applicabte
to all enbedded procedures._ : . \

RS

Ce XREF and XDEF may be provided by llsts of rout!ne names:f
in common dJecks. Such, fists of XDEF shouid be 1isted, but

such tists of XREF should not be listed except for a comment

noting the call to the common deck. DBC&ENT brackets are not

required,:

de Stand alone comments may be a single line starting with
a pound sign in column 1 and . ending with a pound sign iIn
column 71» rather than the CGHPASS style comment (asterisk in
column. 1 of the comment body). o _

The use of opreceeding and p;bcééd!nc' biank tines Is

negotiable between the programmer sand revijewer to achieve a
mutually satisfactory visual effegt. Note that this
simplified form for stand atone comments Is .only applicable
for. comments not intended to be prlnted by the DOCMENT

Pseudo-reentrancy considerations (for FSE and SﬂFEX on!y))

a. The SMFEX Executive may contain a limited number of
tabels within if or for blockss and external {abels within
procedures,. as necessary to implement pseude-reentrancY.

be SMFEX and FSE will contain procedureS’subJect to reentry
under control of the SMFEX Executive. A reentrant procedure
is a procedure which calls another reentrant procedure or
uses the delay or recall statements. There cannot be
reentrant functions. : NI R :

nh Ue

Al=-4
NOS SYMPL CODING STANDARD D
06701783 'V &

Al.0 Addenduw for SMF Project =~ " L e e

ce The reentrancy technique sever!y restricts the usage of

tocal storage and of parameters, The programmer should -
dedicate common block storage to the functions performed by ""
a reentrant routines in preference to locals. Note that' the *°
common block includes one general purpose variable which is '
stackabley so that reentrant routines can dyna&ical!y;“f
allocate storage on a limited scale, e

i
de Reentrant procedures must minimize the use of locaiyfﬁ
storage. Any sequence of code in a reentrant procedure which ' *

uses local storage must be preceded and followed by stand:
alone comments of the form

LOCAL
END LDCAL

The code within the comments <cannot. call any reentrant -
routines.* : |

e, Reentrant procedures must minimtze the use af parameters.,

When parameters are used, it is essential that the parametefrs
- be read-only (i.e. the subroutine ‘does not compute a new

value)s and they must be used before any reentrant procedure

is called.,” Use of parameters shall be followed by a stand

alone cowment of the form: -

END PARAMETERS # | ' e

fe Reentrant routines lose control by' calling DELAY or
RECALL.: In: the single-user version, these are COMPASS!
subroutines which execute recall macros. In the multi-user "
version, these are DEF-ed to be calls into certaln entry
points althln SMFEX to invoke the multi ~tasking executlve.

g Reentrant routines are bracketed by the IDBEGIN and IDEND
macros. In the single-user version, these are DEF-ed to'’
simply ylield BEGIN and ENDs In the multi-user versions these’
are DEF-ed to generate code to maintain data structures nh!ch
help the SMFEX multi-task executive supervise the reentry, '«
Reentrant routines cannot use the RETURN statement, but can
use the TORET macro.

: ' Al-5
NOS SYMPL CODING STANDARD
| | 06/01/83

Al.0 Addendum for SMF ProJject

he Reentrant routines must be restricted as to the type of
monijtor calls they can issue either explicitly or by caltling
other routines.: In particular, reentrant code must use only
CIO and each CI0 call must be explicits This effectively
bans the use of the standard NOS common decks. Furthermores
the onily file which can be dealt with by reentrant code is
the editor workfile. Terminal I/0 will be funneled into one

- module of codes, which shall conditionally compile to yield
conventional FET-s and CIO calts for FSEs and calls to the
SMFEX Executlive for SMF,

ie The only writeable storage which can be used other than
local storage as described above shall reside in a single
common blocky or shalil reside in based arrays whose pointer
words are in the common blocks The common block shall be
orgenized into several sectlions based on the varlous degrees
of reentrancy services provided by the SMFEX Executive. in
the singte~uyser editors portions of this common block must be
complied to map exactly the same as the wmulti-user version,
since that-portion of the common block is tranferred verbatinm
through _the workfile for communication between the two
versions of the editor., Al]l critical storage mapping must be
identified as such in documentation.

Jeo Reentrant code shall minimize dynamijc relocation of based
arrayse. Ralocation is allowed If the pointer word is treated
as non-reentrant. Relocation 1{is possible with limited
reentrancy provided the pointer word is mapped into the
reentrant section of the common blocks Note that while this
will keep-a pointer value alive for the duration of disk I/0s
it is not able to keep any pointer valid across terminal 1I/0
unless the polinter points wWwithin reentrant common itself,
This Is due to the re~-mapping of array locations performed by
the SMFEX ' Executive upon internal swaps. For those _arrays
re-maoped by SMFEX swappings no module except SHFEX can ever
change the painter Words

